
The NET/ROM Protocol

This chapter describes the higher-level protocols employed by NET/ROM. It assumes a knowl-
edge of the underlying AX.25v2 link-layer protocol. [A detailed description of AX.25v2 is available
from the American Radio Relay League, Newington, CT 06111, USA.]

Structure of Inter-Node HDLC Frames

The HDLC frame structure used by NET/ROM for its inter-node crosslinks is illustrated in the fol-
lowing diagram:

Flag
AX.25 Header

(PID=‘CF’)

Networ k

Header

Tr anspor t

Header
Infor mation FCS

AX.25 Frame

Callsign of Origin Node

(AX.25 shifted for mat)

Callsign of Destination Node

(AX.25 shifted for mat w/EOA bit)

Time to

Live

Circuit

Index

Circuit

ID

TX Seq

Number

RX Seq

Number

Opcode

&Flags

Networ k Header (15 bytes) Tr anspor t Header (5 bytes)

Choke

Flag

NAK

Flag

More-

Follows

Flag

Resr vd Opcode

Opcode & Flags (1 byte)

Each frame consists of a standard AX.25 link header, followed by a 15-byte networ k header and a
5-byte transpor t header. The networ k header contains the infor mation needed for automatic rout-
ing, while the transpor t header supports end-to-end error and flow control for circuits.

In amateur radio service, NET/ROM identifies its inter-node frames with an AX.25 protocol identi-
fier byte (PID) of ‘CF’ hex. In commercial service, var ious other PID values are used.

Transpor t Layer (End-to-End) Protocol

The Circuit Manager implements a conventional ‘‘sliding window protocol’’ in order to provide end-
to-end flow and error control for each transpor t circuit. The protocol is similar to AX.25 but with
these major differences:



-2-

1. The receive window size is negotiated, and is usually greater than 1.

2. Message sequence numbers are 8-bit fields, allowing window sizes up to 127 frames.

3. Selective NAKing is supported.

Six transpor t-layer message types are supported:

Connect Request

Connect Acknowledge

Disconnect Request

Disconnect Acknowledge

Infor mation

Infor mation Acknowledge

These are described in greater detail below.

Connect request

My

Circuit

Index

My

Circuit

ID

(Unused) (Unused)

Opcode

=‘x1’

Propose

Window

Size

Callsign of Originating User

(AX.25 shifted for mat)

Callsign of Originating Node

(AX.25 shifted for mat)

A Connect Request is used to initiate a new transpor t circuit between the originating node and
the destination node, on behalf of the originating user.

The circuit index is the subscript of a circuit table entry in the originating node. The circuit ID is a
ser ial number used to qualify the circuit index, in order to eliminate any possible ambiguity in
identifying the circuit. The proposed window size specifies the maximum receive window size (in
frames) that the originating node is prepared to accomodate.

Connect acknowledg e

Your

Circuit

Index

Your

Circuit

ID

My

Circuit

Index

My

Circuit

ID

Opcode

=‘x2’

Accept

Window

Size

A Connect Acknowledge is used to respond to an incoming Connect Request. If the high-order bit
of the opcode byte is set, it indicates that the Connect Request is being refused; otherwise, it is
being accepted. The accepted window size indicates the negotiated size of this circuit, and will
never exceed the proposed window size of the Connect Request.



-3-

Disconnect request

Your

Circuit

Index

Your

Circuit

ID

(Unused) (Unused)

Opcode

=‘x3’

A Disconnect Request is used to request the termination of a transpor t circuit, and may be sent
by the node at either end of the circuit.

Disconnect acknowledg e

Your

Circuit

Index

Your

Circuit

ID

(Unused) (Unused)

Opcode

=‘x4’

A Disconnect Acknowledge is used to acknowledge a Disconnect Request.

Information

Your

Circuit

Index

Your

Circuit

ID

TX

Sequence

Number

RX

Sequence

Number

Opcode

=‘x5’ Infor mation

An Infor mation message is used to pass user infor mation across a transpor t circuit.

Because AX.25 frames are limited to 256 bytes and the combined networ k and transpor t header
overhead totals 20 bytes, the maximum size of the infor mation field is 236 bytes. NET/ROM auto-
matically fragments and reassembles any user supplied link-layer infor mation frames that exceed
236 bytes in order to meet this constraint.

Each Infor mation message also serves as a ‘‘piggybacked’’ Infor mation Acknowledge. The Tx
Sequence Number identifies the current infor mation, and the Rx Sequence Number specifies the
next incoming infor mation expected.

If the choke flag is set (bit 7 of the opcode byte), it indicates that this node cannot accept any
more Infor mation messages until further notice. If the NAK flag is set (bit 6 of the opcode byte), it
indicates that a selective retransmission of the frame identified by the Rx Sequence Number is
being requested. If the more-follows flag is set (bit 5 of the opcode byte), it indicates that the infor-
mation is a fragment of a long infor mation frame, and must be reassembled with one or more fol-
lowing infor mation messages by the destination node.



-4-

Information acknowledg e

Your

Circuit

Index

Your

Circuit

ID

(Unused)

RX

Sequence

Number

Opcode

=‘x6’

An Infor mation Acknowledge is used to acknowledge incoming Infor mation messages. The Rx
Sequence Number specifies the next incoming infor mation expected.

If the choke flag is set (bit 7 of the opcode byte), it indicates that this node cannot accept any
more infor mation messages until further notice. If the NAK flag is set (bit 6 of the opcode byte), it
indicates that a selective retransmission of the frame identified by the Rx Sequence Number is
being requested.

RS232 Interconnect Protocol

For multi-channel nodes, infor mation is passed among the interconnected TNCs via their RS232
por ts. The interconnect operates using the same link-, networ k-, and transpor t-layer protocols as
HDLC crosslinks, except that a simple asynchronous var iant of HDLC is employed.

Each frame is preceded with an ASCII STX (instead of an HDLC flag), and terminated by an ETX
plus a one-byte checksum (instead of an HDLC frame-check sequence). Any embedded STX,
ETX or DLE characters within the body of the frame are prefixed by a DLE character (this takes
the place of the normal HDLC ‘‘bit stuffing’’).

When two TNCs are connected using the recommended TNC-to-TNC cable, communications
between the two TNCs is full-duplex and extremely fast (especially at 9600 baud).

When three or more TNCs are interconnected using the recommended diode-matrix coupler cir-
cuit, intercommunications between the TNCs is essentially half-duplex and utilizes CSMA/CD
arbitration. Consequently, do not expect perfor mance to be quite as spectacular as it is with the
dual-channel configuration.



-5-

Routing

This chapter provides a detailed description of the internal wor kings of NET/ROM’s automatic
routing mechanism.

Routing Table Structure

The routing table maintained by each node consists of two dynamically allocated threaded lists:
the destination list and the neighbor list. The destination list contains an entry for every other
node ‘‘known’’ to this node - this is the list displayed by the NODES command. The neighbor list
contains an entry for only ‘‘neighbor ing’’ nodes to which this node has a direct crosslink - this is
the list displayed by the ROUTES command.

For each node in the destination list, the routing table up to three routes to that destination node.
In this context, a route simply identifies a neighboring node that is a step closer to the ultimate
destination. For each route, the destination list maintains a quality value which quantifies the rela-
tive desirability of each route. NET/ROM maintains route quality as an integer which ranges from
255 (best) to 0 (worst). Routes are maintained in sorted order by quality, and NET/ROM always
attempts to use the highest-quality route available. It also keeps an obsolescence count, which
enables NET/ROM to purge paths from its routing table when it has become unuseable and
remained so for a protracted period of time.

Obser ve that the routing table does not contain the entire path to each known destination (this is
unnecessar y, and would require too much memory), but just a list of neighboring nodes that are
reasonable choices for a next step enroute to the destination. You can ask to see the var ious
routes to a particular destination node by doing a NODES command that specifies the callsign or
mnemonic identifier of the destination.



-6-

Destination List

Destination

list linkage

Pointer to next destination

Pointer to previous destination

Is there already an active route to this destination?

Mnemonic identifier of this destination

Callsign of this destination

Which route to use? (1, 2, or 3)

How many routes are there to choose from? (1-3)

Route #1

Quality of this route

Obsolescence count

Pointer to neighbor list entry

Route #2

Quality of this route

Obsolescence count

Pointer to neighbor list entry

Route #3

Quality of this route

Obsolescence count

Pointer to neighbor list entry

Infor mation

queued for

this destination

Pointer to first info. frame

Pointer to last info. frame

Neighbor List

Neighbor

list linkage

Pointer to next neighbor

Pointer to previous neighbor

Callsign of this neighbor

Digipeaters to reach this neighbor (max 2)

Which port? (0=HDLC port, 1=RS232 port

Path quality to this neighbor

Is this neighbor-list entry locked?

How many routes point to this neighbor?

Pointer to link table (crosslink to this neighbor)

(Reser ved)

Routing Algorithm

The Routing Manager analyzes the networ k header of each incoming crosslink-frame, and deter-
mines how to route that frame. The routing algorithm is straightforward, and is summarized in the
following (somewhat simplified) flow diagram:



-7-

Link Mgr posts

incoming frame to

Routing Mgr

Get callsign of

destination node

from Networ k Hdr

Is destination node

equal to this node?

Yes No

Deter mine the

time-to-live count

=0 >0

Pass this frame

to the Circuit Mgr

Search dest list

for this destination

Not found Found

Discard this

frame

Is there already an

active route to

this destination?

No Yes

Set route # = 1

Examine neighbor

list entry that this

route points to

Is there already an

active crosslink to

this neighbor?

No Yes

Establish crosslink to

this neighbor

Failed Succeeded

Advance route #

to next route

OK No more

Queue this frame

onto info list for

this destination

Make this the

active route for

this destination



-8-

Automatic Routing Table Updates

Each node makes a periodic broadcast of infor mation from its routing table in order to provide the
basis of routing table updates at neighboring nodes. The broadcast is normally made once an
hour, although the frequency may be changed by the control operator.

The routing broadcast takes the for m of one or more AX.25 UI-frames tagged with a special PID
(‘CF’ hex in the amateur radio service). The source callsign identifies the broadcasting node, and
the destination callsign is ‘‘NODES’’. The infor mation contents of each frame has the following
str ucture:

Signa-

ture

‘FF’ hex

Mnemonic ident of

sending node

(6 bytes)

Callsign of

destaination node

(7 bytes)

Mnemonic ident of

destination node

(6 bytes)

Callsign of best-

quality neighbor

(7 bytes)

Best-

quality

value

(more destinations)

Repeat for each known destination

(up to 11 per UI frame)

Up to eleven destinations are packed into each UI-frame, and the node broadcasts as many such
frames as required to send its entire routing table.

When a node receives an auto-routing broadcast UI-frame from one of its neighboring nodes, it
analyzes the contents and makes appropriate updates to its own routing table. This process is
more complex than one might think. The receiving node utilizes a series of heuristic rules to keep
the size of the routing table manageable and to try and avoid ‘‘loops’’ and other undesirable
routes. Here is a summary of the most important rules used in processing auto-routing update
broadcasts:

1. If the worst quality for auto-updates parameter is zero, all auto-update broadcasts are
ignored.

2. If the UI-frame does not have the proper PID or signature byte, the frame is ignored.

3. The neighbor list is searched for an entry corresponding to the node that originated the
broadcast. If no such entry exists, a new one is created and assigned a default path quality
in accordance with the quality parameter appropriate to the channel (HDLC or RS232) over
which the broadcast was received.

4. A direct route is assumed to exist to the node that originated the broadcast. The quality of
this route is taken from the path quality in the neighbor-list entry.

5. For each destination node listed in the broadcast, an indirect route is assumed to exist via
the node who originated the broadcast. The quality of this route is calculated by combining
the route quality from the broadcast with path quality of the neighbor node as defined in the
neighbor-list entry. The qualities are multiplied, normalized, and rounded as shown in the
following for mula:

routequality = [(broadcastquality x pathquality) + 128] / 256

6. An indirect route is considered to be a trivial loop if the callsign of the best-route neighbor
node in the broadcast matches the callsign of the receiving node. Trivial loop routes are
assigned a quality of zero, so they are used only as a last resort. Quality-zero routes are
never included in outgoing auto-routing broadcasts.



-9-

7. Only the three highest-quality routes to a destination are retained.

8. Any route with quality less than the worst quality for auto-updates parameter is ignored.

9, If the number of entries in the destination list is greater than or equal to the max destina-
tions parameter, then no additional destinations will be added.

Each route in the routing table has an obsolescence count which is initialized to the obsolescence
count initializer parameter whenever the route is added or updated as the result of an auto-routing
broadcast. The count is also reinitialized to this value whenever the route is actually used suc-
cessfully. The default initializer value is 6. Per iodically, NET/ROM scans through the routing table
and decrements the obsolescence count of every route in the table - this scan occurs with same
frequency as routing broadcasts, nor mally once each hour. If the obsolescence count of a route
is decremented to zero, the route is deleted from the routing table.

A routing table entry created by the automatic routing update mechanism can never have an
obsolescence count of zero, since such an entry is automatically purged from the table when its
count reaches zero. When a route is entered into the routing table manually with the NODES+
command, however, it is possible to set the route’s obsolescence count to zero. This has special
significance: it marks the route as locked. such a locked route will never be updated or deleted by
the auto-update mechanism. It can, however, be deleted manually with the NODES- command.


