 FBB Forward Protocol.

 FBB software includes two forward protocoles. The first one
 is standard with MBL/RLI protocole. The second one was developped
 to allow a better efficiency, particularly on long links where
 propagation time of data are long. The exchange of commands is
 reduced to a minimum, and not acknoledged to get time. The data
 transfer direction is changed every block of data, a block of data
 holding up to five messages. This uses the "pipeline" effect of
 long links (Nodes and digipeaters), and gain some time over short
 links (HF...).
 FBB protocole is very simple in its principle. It is based on
 MID/BID usage. The identification is made by the F letter in the
 SID (system type identifier contained in square brackets). All
 command lines must start in first collumn with the 'F' character.
 All command lines are ended by a return (CR) character.
 Suppose I call another BBS to forward some mail. When I
 connect another BBS using FBB protocole, I will receive the SID
 followed by a text and the prompt (">"). If the SID contains the F
 flag, I will send immediately my SID and the first proposal.
 Proposals looks like :
 FB P F6FBB FC1GHV FC1MVP 24657_F6FBB 1345
 F>
 FB : Identifies the type of the command (proposal)
 P : Type of message (P = Private, B = Bulletin).
 F6FBB : Sender (from field).
 FC1GHV : BBS of recipient (@field).
 FC1MVP : Recipient (to field).
 24657_F6FBB : BID ou MID.
 1345 : Size of message in bytes.
 F> : End of proposal.
 ALL the fields are necessary. This kind of command must hold
 seven fields. If a field is missing upon receiving, an error
 message will be send immediately followed by a disconnection.
 A proposal can handle up to five FB command lines. If the
 total size of messages seems to be too important, the proposal can
 handle less lines. In FBB software, a parameter is defined in
 INIT.SRV file to tell the maximum size of the message block. It is
 set by default to 10KB for VHF use. It can be adjusted according
 to the quality of the link.
 Exemple of proposal :
 FB P F6FBB FC1GHV.FFPC.FRA.EU FC1MVP 24657_F6FBB 1345
 FB P FC1CDC F6ABJ F6AXV 24643_F6FBB 5346
 FB B F6FBB FRA FBB 22_456_F6FBB 8548
 F>
 This proposal is limited to three FB lines, as the amount of
 messages overran the 10KB limit defined for this link.
 When receiving the proposal, the other BBS will reject,
 accept or defer the message. This command is made by a FS line :
 FS -+=
 This means :
 - I don't want the first message (-).
 - I need the second message (+).
 - I defer the third message, as I'm still receiving it.
 It should interesting to defer a message if you are still
 receiving it on a other channel, or if you think that the size is
 to big, or for another reason. The message should be proposed
 again at the next connection.
 FS line MUST have as many +,-,= signs as lines in the
 proposal.
 When receiving the FS lines, I can send the block of
 messages. Each message is made with the title on the first line,
 the text, and a Ctrl Z in the last line. The is no blank line
 between the messages.
 Title of 2nd message
 Text of 2nd message

 ^Z
 When the other BBS has received all the asked messages, it
 acknoledges by sending its proposal, and the system is reversed.
 If it has no message to send, it only sends a line :
 FF
 This line must not to be followed by a F>.
 If the other hand has no message, it sends a line :
 FQ
 and asks for the disconnection.

 Example :

 F6FBB FC1GHV
 --
 Connects FC1GHV
 Connected
 [FBB-5.11-FHM$]
 Bienvenue a Poitiers, Jean-Paul.
 >
 [FBB-5.11-FHM$] (F6FBB has the F flag in the SID)
 FB P F6FBB FC1GHV.FFPC.FRA.EU FC1MVP 24657_F6FBB 1345
 FB P FC1CDC F6ABJ F6AXV 24643_F6FBB 5346
 FB B F6FBB FRA FBB 22_456_F6FBB 8548
 F>
 FS +-+ (accepts le 1st et le 3rd).
 Title 1st message
 Text 1st message

 ^Z
 Title 3rd message
 Text 3rd message

 ^Z
 FB P FC1GHV F6FBB F6FBB 2734_FC1GHV 234
 FB B FC1GHV F6FBB FC1CDC 2745_FC1GHV 3524
 F>
 FS -- (Don't need them, and send immediately the proposal).
 FB P FC1CDC F6ABJ F6AXV 24754_F6FBB 345
 F>
 FS + (Accepts the message)
 Title message
 Text message

 ^Z
 FF (no more message)
 FB B F6FBB TEST FRA 24654_F6FBB 145
 F>
 FS + (Accepts the message)
 Title message
 Text message

 ^Z
 FF (still no message)
 FQ (No more message)
 Disconnection of the link.
 In this example, FBB protocole is used as the two BBS were
 identified by the F flag in the SID. If F6FBB had sent the SID
 [FBB-5.10-MH$] when answering FC1GHV, the protocole should be the
 standard MBL/RLI.
 All callsigns are only examples !

 Extension to the protocole. Compressed forward FBB.

 The protocole utilized for the transfer of ascii files compressed
 is an extension to the existing protocole. The compressed forward
 is validated by the presence of the letter B in the SID
 [FBB-5.12-BFHM$]. The transfer of compressed files can only take
 place under FBB protocole. The presence of the letter B in the SID
 without the F letter will remain without effect.
 The only difference as regard to the standard protocol is the
 submit line. It can specify the type of data contained in the
 compressed message. FA means that the transfer will be an ascii
 compressed message. FB means that the message will be a binary
 compressed file (this last possibility is not yet implemented).
 The submission of an ascii message will be in the form :
 FA P FC1CDC F6ABJ F6AXV 24754_F6FBB 345
 The submission of a binary file will be in the form :
 FB P FC1CDC F6ABJ F6AXV 24754_F6FBB 345
 The transfered data are of a specific format. The transfer will be
 done in binary mode. This last one is derived of the YAPP protocol
 which is very reliable. All transfer is made of a header, a block
 of data, an end of message and a checksum. Each transfer is
 equivalent to the transfer of one message of the standard protocol
 and shall not be followed by a control Z, the end of file
 specifier is defined in another way. Unlike YAPP transfers, there
 is no acknowledgement during the transmission of messages, the
 protocole is then more simple and efficient.
 Format of header for an ascii compressed message (submission FA) :
 <SOH> 1 byte = 01 hex
 Length of the header 1 byte = Length from the title,
 including the two <NUL> characters.
 Title of the message 1 to 80 bytes
 <NUL> 1 byte = 00 hex
 Offset 1 to 6 bytes
 <NUL> 1 byte = 00 hex
 Format of header for a binary compressed file (submission FB) :
 <SOH> 1 byte = 01 hex
 Length of the header 1 byte = Length from the filename,
 including the two <NUL> characters.
 Name of the file 1 to 80 bytes
 <NUL> 1 byte = 00 hex
 Offset 1 to 6 bytes
 <NUL> 1 byte = 00 hex
 As to follow the french regulation, the title of the message or
 the file name are transmitted in readable ascii, not compressed.
 The offset is also transmitted in ascii and specifies the offset
 at which the data should be inserted in the file (in case of a
 fragmented file). In the version 5.12, this parameter is not
 utilized and is always equal to zero.
 A data block contains from one to 256 bytes. It begins by two
 bytes which specify the format.
 Data block format :
 <STX> 1 byte = 02 hex
 Number of data 1 byte = 00 to ff hex.
 if length is 256 bytes, the value is 00.
 Data bytes 1 to 256 bytes
 The last data block is followed by the end of file specifier and
 the checksum.
 End of file specifier format :
 <EOT> 1 byte = 04 hex
 Checksum 1 byte = 00 to ff hex
 The checksum is equal to the sum of all the data bytes of the
 transmitted file, modulo 256 (8 bits) and then two's complemented.
 The checking of the checksum is very simple :
 The sum of the datas from the file and the checksum received
 modulo 256 shall be equal to zero.
 In case of a checksum error, the message or the file is not taken
 to account and the system issues a disconnect request after having
 sent the comment :
 *** Erreur checksum

 Ascii values of the characters (1 byte) used in the protocole :
 <NUL> = 00 hex
 <SOH> = 01 hex
 <STX> = 02 hex
 <EOT> = 04 hex
 Most of ideas for this binary transmission are issued from YAPP
 protocole. Thanks to WA7MBL.

 Extension to the protocole. Compressed forward FBB Version 1.

 The protocole utilized for the transfer of ascii files compressed
 is an extension to the existing protocole. The compressed forward
 is validated by the presence of the letters B1 in the SID
 [FBB-5.15-B1FHLM$]. The transfer of compressed files may only take
 place under FBB protocole. The presence of the letter B in the SID
 without the F letter will remain without effect.
 The differences as regard to the binary protocol version are:
 - A variable number of fields in the submit line, but at least 7
 (as in previous version).
 - A new set of answers :
 + or Y : Yes, message accepted
 - or N : No, message already received
 = or L : Later, already receiving this message
 H : Message is accepted but will be held
 R : Message is rejected
 E : There is an error in the line
 !Offset: Yes, message accepted from (Offset).
 Most of these answer do not need explanation or were already used
 in previous version. + and Y, - and N, = and L are equivalent but
 are still used for compatibility.
 !Offset asks the remote BBS to start transfer from Offset.
 For instance, YL!3350RH (or +L!3350RH) means that :
 - 1st message is accepted
 - 2nd message is delayed
 - 3rd message will be sent from offset 3350 (in compressed file)
 - 4th message is refused
 - 5th message is accepted but will be held
 The submission of an ascii message will be in the form :
 FA P FC1CDC F6ABJ F6AXV 24754_F6FBB 345
 The submission of a binary file will be in the form :
 FB P FC1CDC F6ABJ F6AXV 24754_F6FBB 345
 The transfered data are of a specific format. The transfer will be
 done in binary mode. This last one is derived of the YAPP protocol
 which is very reliable. All transfer is made of a header, a block
 of data, an end of message and a checksum. Each transfer is
 equivalent to the transfer of one message of the standard protocol
 and shall not be followed by a control Z, the end of file
 specifier is defined in another way. Unlike YAPP transfers, there
 is no acknowledgement during the transmission of messages, the
 protocole is then more simple and efficient.
 Format of header for an ascii compressed message (submission FA) :
 <SOH> 1 byte = 01 hex
 Length of the header 1 byte = Length from the title,
 including the two <NUL> characters.
 Title of the message 1 to 80 bytes
 <NUL> 1 byte = 00 hex
 Offset 1 to 6 bytes
 <NUL> 1 byte = 00 hex
 data blocs ...
 Format of header for a binary compressed file (submission FB) :
 <SOH> 1 byte = 01 hex
 Length of the header 1 byte = Length from the filename,
 including the two <NUL> characters.
 Name of the file 1 to 80 bytes
 <NUL> 1 byte = 00 hex
 Offset 1 to 6 bytes
 <NUL> 1 byte = 00 hex
 data blocs ...
 As to follow the french regulation, the title of the message or
 the file name are transmitted in readable ascii, not compressed.
 The offset is also transmitted in ascii and specifies the offset
 in the file from which the data will be sent.
 A data block contains from one to 256 bytes. It begins by two
 bytes which specify the format.
 Data block format :
 <STX> 1 byte = 02 hex
 Number of data 1 byte = 00 to ff hex.
 if length is 256 bytes, the value is 00.
 Data bytes 1 to 256 bytes
 The first block data first contains the CRC16 of the full binary
 file, then the size of the full uncompressed file, and then the
 binary from offset 0 or specified offset if !Offset was asked.
 The last data block is followed by the end of file specifier and
 the checksum of the data sent.
 End of file specifier format :
 <EOT> 1 byte = 04 hex
 Checksum 1 byte = 00 to ff hex
 The checksum is equal to the sum of all the data bytes of the
 transmitted file, modulo 256 (8 bits) and then two's complemented.
 The checking of the checksum is very simple :
 The sum of the datas from the file and the checksum received
 modulo 256 shall be equal to zero.
 In case of a checksum error, the message or the file is not taken
 to account and the system issues a disconnect request after having
 sent the comment :
 *** Erreur checksum
 The CRC16 is computed for the full binary file including the length
 of the uncompressed file (4 bytes in top of file).
 In case of resume, it will be the only mean to be sure that the part
 of the already received file matches with the new one.
 The LZHUF_1 program used with option "e1" generates a binary compressed
 file with the following format :
 CRC16 : 2bytes
 Length: 4 bytes
 Datas : rest of the file
 In case of forwarding with a BBS using version 0, only the part from
 offset 2 will be sent
 In case of forwarding with a BBS using version 1, the 6 top bytes will
 be always sent, then seek to Offset+6, then send data.
 Ascii values of the characters (1 byte) used in the protocole :
 <NUL> = 00 hex
 <SOH> = 01 hex
 <STX> = 02 hex
 <EOT> = 04 hex
 Comments will be welcome.
 F6FBB @ F6FBB.FMLR.FRA.EU

